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Abstract: Beer’s law plots are commonly straight-line graphs in which absorbance is plotted versus 
concentration. The errors in such a plot are accentuated in the high-absorbance region due to the logarithmic 
transformation. This paper discusses the errors inherent in all Beer’s law plots and the choices the student has 
available: the use of either linear or nonlinear plotting methods. 

An experiment is described in which student Beer’s law data are treated in several ways to find out if 
transformation errors are significant. The conclusion is that if the absorbance values obtained for the calibration 
data exceed A = 1, then nonlinear regression or weighted linear regression is indicated. 

When using radiation absorption instruments 
(spectrophotometers) to determine concentrations, the straight-
line relationship between absorbance and concentration seems 
a simple analytical tool. It is not that simple, however, for the 
statement that absorbance is proportional to concentration is a 
mathematical transformation of the exponential nature of the 
transmittance–concentration relationship. This transformation, 
A = –log T, has a striking influence on the errors that occur in 
experiments, particularly in regions of high absorbance. We set 
out to determine if these errors make much difference in the 
typical student Beer’s law determination of an unknown 
concentration. 

Instruments used in chemistry to measure the concentration 
of a species of interest fall into two categories. Either the 
instrument response (called the signal) is directly proportional 
to the concentration of the species, or it is not. If it is not, then 
some known function relates the signal to the concentration. 
When using instrumentation to determine an unknown 
concentration, it is important to know which type your 
instrument is because it affects the error analysis of the result. 
Electrical conductance meters, fluorometers, and osmometers 
are three examples of instruments of the first type. Their signal 
is, at least approximately, proportional to concentration. Any 
nonlinearities can be taken into account by suitably small 
calibration ranges or by curve fits to the calibration points. 

Many students are surprised to find out that Beer’s law 
instruments, which means all absorption spectrophotometers, 
fall into the second category of instruments. The origin of the 
surprise is that students think that the Beer’s law signal is 
absorbance, and we all know that absorbance is linearly related 
to concentration. But the signal is transmittance, not 
absorbance; therefore, because of the transformation to a 
logarithmic function, error analysis for Beer’s law experiments 
should not be done using the usual straight-line error analysis 
equations [1–5]. 

The mathematical transformation, –logT = A, is commonly 
performed either by the analyst or by the instrument itself, and 
A is proportional to concentration. Thus, the familiar A = abc 
form of Beer’s law is better known than the true Beer’s law 
equation, the exponential decay equation. 

Beer’s law, more correctly called the Beer–Lambert law, is a 
statement that the intensity of light, I, exiting from an optical 

absorption cell is exponentially related to the intensity entering 
the cell, 

 0 10 kCI I −= ×  (1) 

Here, I0 is the intensity of the entering light, I is the intensity 
of the exiting light, C is the concentration of absorbing species 
in the solution, and k is a decay constant. This exponential 
decay is far from a straight line (Figure 1a). 

Most of us think of this law as a straight line because of a 
transformation of the variables. The ratio I divided by I0 is 
defined as T, the transmittance, and –log T is defined as A, the 
absorbance. Thus A= kC. Plot A versus C and a straight line 
results, one that in theory passes through zero. By plotting the 
data transformed, our eyes are able to envision the straight-line 
data fit (Figure 1b) much easier than the decaying-exponential 
one. 

One more change is usually made to the equation. The 
constant k depends upon the absorbing species (its optical 
properties at the wavelength chosen) and on the cell path 
length. It is usual to write 

  or A abC A bCε= =  (2) 

In these two forms b is the path length, usually in 
centimeters, and a or ε are decay constants characteristic of the 
absorbing species. When ε is used, the concentrations are in 
moles per liter, and ε is called the molar absorptivity. In older 
texts ε is called the molar extinction coefficient. If a is used 
the concentration units can be anything convenient, including 
mol L

–1
, and a is usually simply called the absorptivity. In our 

linear plots the ab in equation 1 is combined into k, the slope 
of the line as determined by regression. 

To illustrate the errors that can arise in spectrophotometry, 
we generated a set of perfect Beer’s law data with a 
spreadsheet. Using the equation 

 1
0 10 k CT T − × ×= ×  (3) 
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Table 1. PERFBEER Data from T = T0 × 10–1×k×C with k = 15 L mol–1, 
T0 = 1 

Concentration T A 

mol L–1 unitless ratio –log T 

0 1.000000 0.000 
0.004 0.870964 0.060 
0.008 0.758578 0.120 
0.012 0.660693 0.180 
0.016 0.57544 0.240 
0.020 0.501187 0.300 
0.024 0.436516 0.360 
0.028 0.380189 0.420 
0.032 0.331131 0.480 
0.036 0.288403 0.540 
0.040 0.251189 0.600 
0.044 0.218776 0.660 
0.048 0.190546 0.720 
0.052 0.165959 0.780 
0.056 0.144544 0.840 
0.060 0.125893 0.900 
0.064 0.109648 0.960 
0.068 0.095499 1.020 
0.072 0.083176 1.080 
0.076 0.072444 1.140 
0.080 0.063096 1.200 
0.084 0.054954 1.260 
0.088 0.047863 1.320 
0.092 0.041687 1.380 
0.096 0.036308 1.440 
0.10 0.031623 1.500 
0.104 0.027542 1.560 
0.108 0.023988 1.620 
0.112 0.020893 1.680 
0.116 0.018197 1.740 
0.120 0.015849 1.800 
0.124 0.013804 1.860 
0.128 0.012023 1.920 
0.132 0.010471 1.980 

 

 
Figure 1. “PERFBEER” data from T=T0 × 10-1×k×C with K=15 L    
mol-1, T0=1 and C as shown. A). Plot of T vs. C in green. B). Plot of 
-logT vs. C in red. 

with k =15 L mol–1
, T 

0 = 1, and C values from 0.004 to 0.132 
mol L–1

, we generated the data table PERFBEER (Table 1). T 
0 

stands for an adjustable parameter, which in ideal data sets 
will always equal 1, but in real data sets will not necessarily be 

1, but a parameter adjusted by the  nonlinear  regression 
program. See Figures 1a and 1b. The intercept, i, plotted 
linearly will be –log T 

0. For plotting purposes we use the 
symbol i as the intercept of a linear plot and k as the slope of 
that plot. Again, the parameter k is in reality ab in the 
commonly seen form of Beer’s law, A = abc, and the 
parameter i is the y intercept of the linear plot. When we do 
nonlinear plots we call the pre-exponential factor T0 and the 
decay constant k because it is numerically the same as the line 
slope in the linear form. 

Errors in Exponential Decay Curves and Distortion of This 
Error by Transformation 

If instruments actually measured A rather than T, then a 
constant error in measurement of A would mean a constant 
error in deducing the concentration from that A reading. 
Because T is what the instrument measures, a look at the 
exponential decay curve (Figure 1a) shows that a constant 
error in T, call it ∆T, would not mean a constant error in 
concentration. The varying slope of the line shows that the 
resulting error in concentration, ∆C, would be small at low 
concentrations, high at large  concentrations. 

The inverse of the slope times the constant error in T would 
be the resulting error in C, the concentration error. This error 
would be small (but not zero) at low concentration values, and 
with increasing concentration it would become very large. 

The relative error in concentration would be this error 
divided by the concentration (relative error = ∆C/C). The 
percent error is, of course, this times 100. The division by C 
results in a relative error that is more favorable at some 
concentration values than at others. This can be illustrated by 
taking some “perfect” Beer’s law data and introducing a 
constant transmittance error into each point. 

Constant Error in T 

As previously described, the plots in Figures 1a and 1b were 
created by generating perfect Beer’s law data using a 
spreadsheet. By simulating error in this data it is easy to see 
the different ways that errors show up in the two kinds of 
plots, exponential and linear. After seeing these plots with 
constant simulated error, we became convinced that nonlinear 
regression on the T versus C plot is to be preferred over the 
usual linear regression on the A versus C plot. In the computer 
age, nonlinear regression is no more difficult than best-
straight-line fits (Please see Endnote 1 located in the 
supporting material, 43jb1897.pdf). 

We introduced a constant error of +0.01 into each data 
point. It is important to realize that the error is introduced into 
T, not A. Instruments measure T, not A. If an instrument gives 
a read-out of A, it is because the instrument converted from 
transmittance to absorbance by taking the negative logarithm 
of T. The resulting plot (Figure 2a) looks much the same as the 
perfect data plot (Figure 1a). After introduction of this error, 
the parameters reported by nonlinear regression were T 

0 = 
1.0026 and k = 14.5. Note that this constant error made about a 
3% difference in the k parameter. 

Next, we plotted the same data in the transformed (linear) 
way (Figure 2b). At high concentrations the small constant 
error in A. The linear regression parameters for this set of
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A 

B 

Figure 2. A). Plus 0.01 error in T. •••••• Data with 0.01 error, —
— Perfect line before error, —— Nonlinear regression line. B). Plus 

0.01 error in T. •••••• Data with 0.01 error, —— Perfect line 
before error, ——  Linear regression line. 

error in T gets transformed into a surprisingly large, negative 
points are intercept, i, equal to 0.0471 and slope, k, equal to 
13.12. The slope of the regression line is 12.5% too low. 

Repeating the process nonlinearly with a –0.01 error results 
in small changes (Figure 3a), but an even more striking 
deviation from straightness is obtained when plotted with a 
transformed variable (Figure 3b). Here the intercept is –0.1626 
and the slope is 19.83. The slope of the regression line is 
32.2% too high. 

Plotting both T ± 0.01 data in one graph and doing nonlinear 
regression on the combined set of data points yields the correct 
result (Figure 4a). The result is correct because the errors have 
canceled. But plotting combined plus and minus errors linearly 
is a very different story. See Figure 4b. Here, because the 
transformed errors do not cancel, the best straight line is not 
good at all. In all fairness we should point out that such gross 
errors do not result until the absorbance exceeds unity. 

A 

B 

Figure 3. A) Minus 0.01 error in T. •••••• Data with 0.01 error, 
—— Perfect line before error, —— Nonlinear regression line. B) 

Minus 0.01 error in T. ••••••  Data with 0.01 error,    —— Perfect 
line before error, ——  Linear regression line. 

A Closer Look at the T Versus C Data Before 
Transformation 

The T versus C plot does not exhibit these gross errors 
because it was the transformation to A which caused them. 
Still, there are errors before transformation because of the 
curvature of the T versus C plot. If we inspect the middle 
region of this plot (Figure 5), we see that the slope is 
intermediate here, and that the steeper this slope the more 
accurate the determination should be. What can we say about 
the error in concentration introduced by our 0.01 errors in T? 
We can see that the error in concentration, ∆C, gets worse as 
the concentration increases, because the slope of the line is  
decreasing. But analytical chemists are interested  in the  
relative error, ∆C divided by C. What happens to the relative 
error in moderate, high, and in low concentration regions? 
Remember that relative error is inversely proportional to C and 
also inversely proportional to the slope of the line. 
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A 

B 

Figure 4. A) Both plus and minus 0.01 error in T. Perfect line and 
nonlinear regression line are the same line. B) Both plus and minus 

error in T. ••••••  Data with ±0.01 error, —— Perfect line before 
error, ——  Linear regression line. 

 
Figure 5. Three regions of the T versus C plot. !!!!!! Data with 
0.01 error, —— Perfect line before error. 

Error at Moderate Concentrations. Because C is 
moderate and ∆T/∆C is moderate, the relative error is a 
minimum in this region. 

Error at High Concentrations. In the high C region the 
relative error would seem to get smaller still because of C 
itself getting larger, except that the slope of the line gets 
extremely small. This smaller slope increases ∆C for a given 
∆T and increases the error faster than can be compensated for 
by the increasing C in the denominator. Thus, the relative error 
goes up in this region. 

Error at Low Concentrations. Inspecting the low C 
region, we see that the slope is favorable to yield a small ∆C 
for a given ∆T, but the C itself is small, and because C is in the 
denominator of the relative error expression the result is that 
the smallness of C overrides the bigness of the slope, and the 
relative error becomes increasingly large at these small 
concentrations. 

The Twyman–Lothian Plot 

F. Twyman and G. F. Lothian recognized all of this in 1933, 
and published [6] a simple derivation of the relative error 
versus transmittance equation: 

 
1 0.434

log

dC

C dT T T
=  (4) 

(Please see Endnote 2 located in the supporting material, 
43jb1897.pdf.) 

Because dC/dT is always negative, plotting –1/C dC/dT 
versus T gives a minimum relative error plot that is familiar to 
most instrumental analysis students [7]. (See Figure 6A.) The y 
axis of a Twyman–Lothian plot is the relative fractional error 
in the concentration for each fractional error in measurement 
of T. Put another way, it is the relative standard deviation of 
the concentration answer for each relative standard deviation 
of the T values. 

Errors are minimized when T is in the range of 0.1 to 0.75, 
which corresponds to A values between 1 and 0.12. Outside of 
these ranges we expect greater error. Figure 6b is the same plot 
of relative error, but plotted versus A. These Twyman–Lothian 
plots show probable relative error in the unknown for a given 
experimental error, ∆T. This error will be most pronounced 
outside the regions shown because of the exponential nature of 
T. It is important to note that amplification of these errors by 
conversion to logarithms is not shown on these plots, and that 
this extra error is most pronounced in the high A (low T) 
region. 

Real Data 

A recent paper in the literature [8] titled “The Remarkable 
Resilience of Beer’s Law” seems to suggest that Beer’s law 
can be used in these regions of very low and very high 
absorbance, despite Twyman–Lothian errors and trans-
formation errors. This data set of Muyskens and Sevy is not 
typical Beer’s law data as students might collect it. It is data on 
very-low-pressure gas samples collected using very 
sophisticated laboratory equipment. The light  source was a 
laser, and the detector was a special time-averaging pulse 
detector. Such results may mislead students into thinking that 
Beer’s law should work fine for their solutions at all values of 
absorbance (Please see Endnote 3 located in the supporting 
material, 43jb1897.pdf). 
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A 

B 

Figure 6. A). The Twyman-Lothian plot of relative error versus T. B). 
The Twyman-Lothian plot of relative error versus A. 

Student Data 

We hope to answer the question, “Should students plot 
Beer’s law data nonlinearly (T versus C) and do nonlinear 
regression, or is it satisfactory to plot A versis C and do linear 
regression, as probably most do?” Real student solution data 
are expected to show errors, particularly outside of the 
recommended concentration range. In order to answer the 
question posed above, “Does it make any difference?,” we 
analyzed student data taken on an inexpensive 
spectrophotometer. The instructor is presumed to have the 
right answer to the “unknowns.” Students A, B, C, and D took 
data (Table 2) on a Milton Roy Company Spectronic 20D 
spectrophotometer at 395 nm using standard solutions, which 
they prepared by serial dilution from a 1.00 M nickel(II) nitrate 
stock solution [9]. The path length of the cells was 1.165 cm. 
Two of the data sets were kept in the recommended range, but 
the other two sets were extended intentionally beyond this 
region to answer the question about which plotting method is 
superior. The students were also given an unknown solution 
which fell in the range 0.01 to 0.10 M nickel(II) nitrate. 

Table 2. Student Percent T Data Taken on a Spectronic 20D for 
Nickel(II) Nitrate Solutions 

Concentration 

mol L–1 

Student A 

%T 

Student B 

%T 

Student C 

%T 

Student D 

%T 

0.004 95.2    
0.01 89.2 88.0 88.2 88.2 
0.02 79.0 78.8 78.6 77.8 
0.03 70.0 68.5 69.7 68.5 
0.04 62.3 61.0 61.0 60.5 
0.05 55.8 54.5 54.8 54.2 
0.06 49.6 47.5 48.0 47.4 
0.07 43.4 42.0 42.5 41.7 
0.08 39.2 38.0 38.0 37.1 
0.09 34.5 33.0 33.1 32.8 
0.10 30.6 30.0 29.6 29.9 
0.11 26.8   27.4 
0.12 24.2   24.8 
0.13 21.6   21.5 
0.14 19.6   19.4 
0.15 17.9   18.7 
0.16 16.0   16.9 
0.17 13.8   13.2 
0.18 12.4   12.4 
0.19 11.2   11.4 
0.20 10.2   10.6 
0.30 4.8   4.6 
0.40 2.1   2.9 
0.50 1.0   1.1 
Unk. soln. 67.0 67.0 67.0 64.9 

 
What to Do with Beer’s Law Data 

We recommend that when a student has finished taking 
data, the next step should be to make a hand-drawn graph of 
these data on graph paper. For the graph, absorbances should 
be calculated from transmittance readings and a plot of A 
versus C prepared. The graph should have points only, no 
lines, and certainly not lines connecting each point. Inspection 
of the graph should lead the student to one of five courses of 
action as follows: 

1) The points seem to fall on a line, and the unknown is 
within these calibration points. Conclusion: Use a 
computer to do standard linear regression on the 
calibration points and deduce the concentration of the 
unknown from the parameters i and k for this least-
squares line. 

2) The points do not fall on a straight line. The deviations 
are in the high A region. The unknown absorbance falls 
within the straight region. Conclusion: Do standard linear 
regression, ignoring (that is not entering) the high A 
outliers. 

3) The points do not fall on a straight line. The deviations 
are in the high A region. The unknown absorbance falls in 
or near the curved region. Conclusion: Do one of the 
following procedures. 
 a) Perform a nonlinear regression analysis on the T vs. 

C data. Use the T0 parameter to calculate i from the 
equation –logT0 = i. Use i and k as you would with 
linear regression to calculate the unknown 
concentration. 
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Table 3. Student Results (from Table 2) Treated Two Ways 

Student Results: Nonlinear Data Analysis 

 Student A Student B Student C Student D 

Parameters returned i = 0.0882 i = 0.0034 i = -0.00029 i = 0.1207 
 k = 4.095 k = 5.26 k = 5.298 k = 3.868 
Parameter confidence i = ± 0.3 i = ± 0.003 i = ± 0.35 i = ± 0.002 
limits k = ± 0.018 k = ± 0.051 k = ± 0.021 k = ± 0.029 
Equation of best line A = 0.088+ A = 0.003+ A = 0+ A = 0.12+ 
 4.1 × C 5.26 × C 5.298 × C 3.8 × C 
Unknown answer 0.022 ± 0.032 ± 0.033 ± 0.017 ± 
reported 0.01 0.0009 0.0007 0.02 
Percent error -33% -3% 0% -48% 

Student Results: Nonlinear Data Analysis 

 Student A Student B Student C Student D 
Parameters returned T0 = 0.997 T0 = 0.996 T0 = 0.999 T0 = 0.973 
 k = 5.069 k = 5.29 k = 5.288 k = 5.045 
Parameter confidence T0 ± 0.008 T0 ± 0.01 T0 ± 0.0007 T0 ± 0.017 
Limits (95%) k ± 0.07 k ± 0.09 k ± 0.07 k ± 0.138 
Equation of line T = 0.997 × T = 0.996 × T = 0.999 × T = 0.97 × 
 10-5.069 × C 10-5.29 × C 10-5.288 × C 10-5.04 × C 
Unknown answer  0.034 M ± 0.033 M ± 0.033 M ± 0.035 M ± 
reported 0.001 0.001 0.0002 0.003 
Percent error 3% 0% 0% 6% 

 

 

 
Figure 7. Student preliminary plots from data in Table 2. 
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Table 4. Five Methods Applied to Student Data. Numbers are the 
Percent Error Using Each Method on the Unknown Solution 
(Concentration 0.033 M) 

Student A B C D 

Nonlinear (exponential) 3% 0% 0% 6% 
Nonlinear (quadratic) -5% -2% 0.6% 4.2% 
Linear (weighted) 6.7% -1.5% -0.6% 11.2% 
Linear (cropped) 3% 4.8%   
Linear (regular) -33% -3% 0% -48% 

 

 
Figure 8. Error Bars for Linear and Nonlinear Regression. 

b) Use nonlinear regression to fit a quadratic equation to 
the A vs. C data. Solve the quadratic equation to find 
the concentration of the unknown. This technique is 
inferior to 3(a) above and 3(c) below, but it is better 
than simple linear regression. 

c) Perform a weighted linear regression on the A vs. C 
data. Use a weight factor of T

2
 [16]. Use the parameters 

reported to calculate the unknown concentration. 

(Please see Endnote 4 located in the supporting material, 
43jb1897.pdf) 

Taking Our Advice 

Table 2 contains the student data. Figure 7 shows the 
student data plotted linearly. Students B and C could see that 
the short data sets did not need elaborate techniques. Their use 
of a simple A versus C plot gave good answers (Table 3). 
Students A and D had data sets that were definitely curved. 
They chose correctly to chop off the high A data (above 0.10 
M) and thus got reasonable results (Table 4, cropped). We then 
took the four data sets without truncation to test the techniques 
of nonlinear, weighted linear, and quadratic fit. We wished to 
see how effectively each of these could compensate for the 
curvature in two of the data sets. Table 4 shows the percent by 
which the student would miss the unknown concentration 
(0.033 M) using all the methods. 

Several things are clear from the results of the student’s data 
sets. If students stayed in a small range within the Twyman–
Lothian limits they had no difficulty getting good results. The 
inexpensive spectrophotometer was quite sufficient for the 
experiment. Using nonlinear data analysis was only slightly 
better than linear regression for the short data sets. Because 

analysis of the confidence limits for the answer is somewhat 
easier for linear plots [12], it may not be worth the trouble to 
go to nonlinear regression when the data do not exhibit 
curvature. 

In the two cases of the extended data ranges, the 
transformed data is definitely not linear, and the simple linear-
least-squares data analysis gives awful answers (Figure 8). The 
students were able to see that the exaggerated curvature 
(Figure 7) caused the poor results by linear analysis. These are 
the data sets that needed cropping, since the unknown falls in 
the linear region. 

Conclusion 

Beer’s law is not a straight line. Better fits to data with 
serious errors are found by nonlinear regression on T versus C, 
rather than by transformation to A followed by simple linear 
regression on the A versus C plot (Table 3). If the data are kept 
within the Twyman–Lothian limits of T = 0.1 to 0.75 (A = 1 to 
0.12) then the differences between the two methods are small, 
even with student data from an inexpensive instrument. If 
there is obvious curvature in the high absorbance region of a 
linear plot, and if these points cannot be discarded because the 
unknown is also in  this region, the student would be well 
advised to use nonlinear regression of T on C. What seem 
gross errors on a linear plot are not always bad points, unless 
they are well beyond the Twyman–Lothian limits. State-of-the-
art instrumentation will allow experimentation in the higher 
absorbance region [7], but with ordinary spectrophotometers 
the student is advised to avoid the region beyond A = 1, either 
by dilution of the samples or by changing the cell path length 
if that is an option. If these options are not available, then 
nonlinear regression will minimize the errors in the low T 
region. 
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